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Abstract. We propose a post-processing technique for Monte Carlo radiative transfer
(MCRT) simulations with a main goal to reduce the total computational run time required
for high quality images, by enhancing the output of lower quality images. Our method
combines dimensionality reduction techniques with integrated nested Laplace approximation
(INLA) to detect and reconstruct the underlying structure in lower quality images or images
with missing data. We test the efficiency of our approach using high resolution synthetic
observations of Milky Way-sized galaxy from the SKIRT Auriga project. This technique
is able to reproduce high-photon-number reference images ∼ 5 times faster with median
residuals below ∼ 20%.

1. INTRODUCTION

Monte Carlo radiative transfer (MCRT) simulations are wildly used to investigate
dust in astrophysical systems and to generate synthetic observations for simulated
galaxies, thus providing a link between numerical simulations and real observations.
MCRT simulations are computationally expensive, since they use a large number of
photon packages to simulate propagation of photons in realistic 3D inhomogeneous
dust distributions (see Noebauer et al. 2019 for a recent review). The skirt code
is one example of MCRT codes used to simulate the propagation of the radiation
through different astronomical environments (Baes & Camps 2015; Camps & Baes
2015).

In this research we introduce a post-processing methodology for enhancing skirt
simulation output, with the main goal of achieving the quality of high-photon-number
images using low-photon-number images as an input. We use dimensionality reduc-
tion techniques with the integrated nested Laplace approximation (INLA, Rue et al.
2009; Rue et al. 2017), an approximate method for Bayesian inference to detect and
reconstruct the spatial structure of simulated galaxies. In addition to the work pre-
sented here (Smole et al. 2022), an alternative approach combines an auto-encoder
neural network and INLA (Rino-Silvestre et al. 2022).

In Section METHODS, we introduce our datasets and techniques. In Section
RESULTS we present our main findings. In Section SUMMARY, we summarise the
results of this work and draw conclusions
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2. METHODS

2. 1. INLA

INLA is a computational method for approximate Bayesian inference of latent Gaus-
sian fields, able to use spatial correlations between data points to reconstruct missing
and noisy data. We refer to Rue et al. (2009) for more details on the mathematical
background of INLA.

INLA is available as an R-INLA package designed for modeling spatial data (Rue
et al. 2017). Since synthetic observations represent non-random spatial structures,
we explore the potential of INLA method as a tool to improve MCRT images, and
optimize the total computational run time required for high quality images.

2. 2. DIMENSIONALITY REDUCTION TECHINIQUES

In order to achieve additional reduction in computational time, we use principal com-
ponent analysis (PCA) and non-negative matrix factorisation (NMF) as dimensional-
ity reduction techniques. Both methods transform the original dataset in the spectral
dimension, such that in this transformed space, the first components will carry most
of the information, while the rest are responsible for less prominent features and noise,
and can be discarded in order to trade some of the precision for computational ef-
ficiency. Although very similar to PCA, NMF has an additional requirement that
both original and decomposed matrices have no negative elements, which might be
beneficial when treating data with only non-negative values, such as astronomical
fluxes.

2. 3. IMPLEMENTATION

We test the performance of our methodology using high-resolution syntetic images
from the skirt Auriga project (Kapoor et al. 2021). We choose Au-16 galaxy, which
represents a typical Milky Way type galaxy with well resolved spiral arms, simulated
with three different inclinations (the angle between the angular momentum vector
and the direction towards the observer): ’face-on’ (i = 0◦), ’edge-on’ (i = 90◦) and
’intermediate’ (i = 115◦).

These high-resolution synthetic images are the result of a skirt simulation per-
formed with 3 × 1010 photon packages, which are hereafter referred to as the high
photon number (HPN) reference images. In addition, we ran simulations of the same
galaxy, but with a lower number of photon packages, 3 × 108 and 3 × 109, and used
them as low photon number (LPN) input images. LPN input images require only
∼ 2% and ∼ 11% of the HPN reference simulation execution time for 3 × 108 and
3× 109 photon packages, respectively.

However, INLA spacial reconstructions alone can also be time costly, especially
for large data cubes (of 50 wavelengths) such as in this particular case. Such re-
constructions are labelled ’pure INLA’ in the following text. We employed PCA
and NMF techniques to reduce the number of wavelength dimensions to 10 principal
components. In that way we reduce the number of individual spatial maps to be re-
constructed with INLA. Such reconstructions are labelled ’PCA or NMF with INLA’
reconstructions.

Additionally, the INLA spatial reconstruction time can be reduced by sampling the
input map data, instead of using complete spatial information. INLA shows optimal
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performance when applied to sparse data, the execution time is notably reduced,
while the quality of reconstructions is influenced only to a lesser degree. We perform
tests to find an optimal sampling percentage and optimal number of PCA or NMF
components.

3. RESULTS

In this section, we present the results using pure INLA and PCA or NMF with
INLA techniques. We test our method using LPN skirt simulations (3 × 108 and
3 × 109 photon packages) with different inclination angles: face-on, edge-on, and
intermediate. INLA reconstructions are performed using 10% or 25% of the available
spatial information, and 10 PCA or NMF components. Table 1 summarises the
results. The quality of INLA reconstructions, compared to HPN reference images, is
quantified by the normalised residuals:

Residuals (%) = |X
′ −X
X

| × 100%, (1)

where X
′

and X refer to INLA reconstruction and HPN reference images, respectively.
Running times presented in Table 1 are as follows:

t (%) =
tLPN skirt + tINLA

tHPN skirt
× 100%, (2)

where tINLA refers either to pure INLA reconstructions or to the total time for PCA
or NMF analysis with INLA reconstructions.

For each realisation, residuals for our reconstructions are significantly lower com-
pared to LPN input residuals, proving that each of the employed methods is able to
recover spatial structure using only 10% or 25% of the LPN input. Although pure
INLA reconstructions result in the lowest residuals, this methodology does not provide
a significant acceleration. However, employing dimensionality reduction techniques
successfully reduces the running times for up to ∼ 10% of HPN reference’s with sim-
ilar residuals. Depending on the LPN input and the sample size, residuals of PCA or
NMF with INLA reconstructions are in the range of ∼ 10-20% for the face-on cube
and ∼ 15-30% for the edge-on and intermediate cubes.

Next, we explore how the quality of our reconstructions changes at different regions
throughout the galaxy plane. We inspected SEDs for individual spaxels, where spaxel
refers to spectral pixel, with a spectrum associated with each one. The chosen spaxels
occupy different regions of galaxy morphology, such as central parts, strong spiral
arms, low flux density regions between spiral arms and galaxy outskirts. Figure 1
shows single-spaxel SEDs for intermediate cubes, sampling 25% of 3 × 108 photon
number realisation. Both pure INLA (green) and PCA or NMF with INLA (blue and
cyan lines) reconstructions are generally in good agreement with HPN reference SEDs
(black lines) for most pixel positions. The quality of reconstructions is correlated with
the spaxel position and the flux density. At high flux density regions, such as central
parts and prominent spiral arms, LPN input SEDs (red lines) closely follow the HPN
reference, and each of the employed techniques provides accurate predictions (spaxels
at positions 1 and 2). At lower flux densities along spiral arms (spaxels 3 and 4), the
LPN input becomes noisy; however, the quality of our reconstructions is not affected.
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Table 1: Median of the normalised residuals and the running times, compared to HPN
reference.

LPN input pure INLA PCA+INLA NMF+INLA
angle photon median input median time median time median time

number (%) sample (%) (%) (%) (%) (%) (%)
3× 109 17.68 25% 9.97 110 10.68 32 11.35 40

face- 10% 11.61 89 12.21 26 12.79 35
on 3× 108 60.97 25% 15.57 103 15.46 27 17.65 24

10% 19.22 74 18.20 15 20.00 19
3× 109 30.23 25% 13.36 58 20.62 18 15.85 24

edge- 10% 15.67 43 22.54 15 17.5 20
on 3× 108 96.88 25% 23.42 47 31.18 10 24.92 12

10% 29.38 28 35.28 7 27.47 8
3× 109 24.91 25% 12.10 97 12.63 24 12.73 33

inter- 10% 14.57 76 14.41 21 14.51 26
mediate 3× 108 86.13 25% 20.03 89 19.27 22 23.00 22

10% 25.10 66 22.63 13 25.89 16

Yet, the reconstruction of the faint, outermost parts of the galaxy (spaxels 5 and 6)
becomes challenging given the LPN input SEDs with both noisy and missing data.
In these regions, pure INLA and NMF with INLA are, overall, able to recover the
full SED of the HPN reference cube, while PCA with INLA occasionally fails in the
reconstruction, resulting in non-physical negative flux densities. Such an example is
shown in spaxel 5 of Figure 1, where the LPN input spaxel is not complete, meaning
it has zero values at some wavelengths.

0 1 2 3

−
3

−
2

−
1

0
1

2

lo
g1

0(
F

lu
x 

de
ns

ity
) 

(M
Jy

/s
r)

HPN ref.
LPN input
pure INLA
PCA+INLA
NMF+INLA

Spaxel 1: (945, 1041)

0 1 2 3

−
2.

5
−

1.
5

−
0.

5
0.

5

Spaxel 2: (860, 1513)

0 1 2 3

−
3

−
2

−
1

0

Spaxel 3: (501, 345)

0 1 2 3

−
4

−
3

−
2

−
1

0

log10(Wavelength (µm))

lo
g1

0(
F

lu
x 

de
ns

ity
) 

(M
Jy

/s
r)

Spaxel 4: (1437, 1720)

0 1 2 3

−
6

−
5

−
4

−
3

−
2

−
1

log10(Wavelength (µm))

Spaxel 5: (983, 1828)

0 1 2 3

−
6

−
5

−
4

−
3

−
2

−
1

0

log10(Wavelength (µm))

Spaxel 6: (1500, 1007)

Figure 1: Single-spaxel SEDs for HPN reference (black) and LPN input (red) inter-
mediate cubes, together with pure INLA (green) and PCA or NMF with INLA (blue
and cyan) reconstructions.

Figure 2 shows spatial distribution of randomly sampling 25% of the LPN input
cube spaxels, together with pure INLA and PCA or NMF with INLA reconstructions
(upper panels) at a wavelength bin of 7.88 µm. Each of these cubes is compared to
the HPN reference and normalised residuals are shown in the lower panels. By using
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Figure 2: Spatial distribution of LPN input cube and pure INLA, PCA or NMF with
INLA reconstructions (upper panels) with the associated residuals (bottom panels)
at wavelength bin 7.88 µm. Sample size: 25%, intermediate cube. Colour legends are
given in logarithmic scale

a sample of LPN input cubes our methods are able to recover underlying spatial
information and reveal structures. The quality of reconstructions is quantified by the
median of normalised residuals (%), calculated for each pixel at the given wavelength
bin, and shown above each residual reconstruction image. The pure INLA results
generally have the lowest residuals; however, this technique has an extensive running
time. The PCA or NMF with INLA reconstructions have similar residuals, with
< 25 % of the running time required for HPN reference (Table 1). However, at
certain wavelength bins, the PCA with INLA technique fails in the reconstruction of
∼ 10% of the spatial information, positioned at regions with the lowest flux density.
Those regions with non-physical negative flux densities can be seen in Figure 2 as
white pixels. The problem with non-physical reconstructions induced by PCA analysis
can be avoided using NMF instead, since NMF always provides physically positive
reconstructions. Using the NMF with INLA method, the problematic regions are
reconstructed, but with typically higher residuals compared to pure INLA. However,
PCA analysis has advantages over NMF: PCA analysis is faster, and the number of
PCA components does not need to be decided in advance. Thus, masking out the
outskirt regions prior to INLA would improve the reconstructions.

4. SUMMARY

In this work (Smole et al. 2022), we used PCA and NMF dimensionality reduction
techniques with INLA for post-processing of LPN skirt simulations. We tested our
methodology using three images of the Au-16 skirt Auriga galaxy, simulated with
different tilt angles: face-on, edge-on, and intermediate. These HPN reference images
(3 × 1010 photon packages) served as the ’ground truth’ to which we compared the
performance of our method applied to LPN input images ( 3× 108 or 3× 109 photon
packages).
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Depending on the number of photon packages, the sample size, and the desired
quality of reconstruction, our method offers time-efficient reconstructions with spatial
residuals of ∼ 20 − 30%, requiring ∼ 7 − 20% of the HPN reference running time.
Higher quality reconstructions can be achieved by sampling 25% of the 3× 109 LPN
input image, resulting in residuals of ∼ 10 − 20% within ∼ 20 − 40% of the HPN
reference running time.

The proposed technique provides a tool to efficiently perform large number of LPN
simulations with various parameters, and such analyses can serve to narrow down the
parameters to then run a full HPN simulation.
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