VI Conference on Active Galactic Nuclei and Gravitational Lensing June 02-06, 2024, Zlatibor Mt., Serbia https://doi.org/10.69646/aob24014

REACTIVE COLLISIONS BETWEEN ELECTONS AND MOLECULAR IONS-ESSENTIAL ELEMENTARY PROCESSES IN THE INTERSTELLAR MEDIA

N. Pop¹, E. Djuissi², R. Hassaine², J. Zs. Mezei³, F. Iacob⁴ and I. F. Schneider^{2,5}

E-mail: nicolina.pop@upt.ro

We describe the major low-energy electron-impact processes involving H_2^+ and HD^+ , relevant for the early universe astrochemistry: dissociative recombination, inelastic and superelastic scattering. The Multichannel Quantum Defect Theory (MQDT) has been employed in computing cross sections and Maxwell rate coefficients for electron-driven reactions involving molecular cations. A new series of computations has been performed to obtain cross sections and rate coefficients

for state-to-state ro-vibrational transitions on the H_2^+ and HD^+ ion, induced in collisions with low-energy electrons. We report cross sections and Maxwellian rate coefficients for both rotational and vibrational transitions, from the lowest 30 ro-vibrational levels and outline several important features, like rotational and resonant effects.