STUDIES ON ELECTRON SWARMS AND STREAMER DISCHARGES IN ECO-FRIENDLY RPC GASES

SAŠA DUJKO¹[®], ILIJA SIMONOVIĆ¹[®], DANKO BOŠNJAKOVIĆ¹[®], ZORAN LJ. PETROVIĆ²[®] and J. de URQUIJO³

¹Institute of Physics Belgrade, Pregrevica 118, 11080 Belgrade, Serbia

²Serbian Academy of Sciences and Arts, Knez Mihailova 35, 11001 Belgrade, Serbia

³Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, 62251 Cuernavaca, Morelos, Mexico

Abstract. In this work, we study the transport of electrons and the propagation of streamers in resistive plate chambers (RPC). We are considering the performance of new eco-friendly gas mixtures instead of the currently used $C_2H_2F_4$ and SF_6 .

Resistive plate chambers are gaseous particle detectors often used for timing and triggering purposes in high-energy physics experiments. At the Large Hadron Collider (LHC) at CERN, all key experiments, including ALICE, ATLAS, CMS and LHCb employ RPC detectors. RPCs in these experiments are operated with gas mixtures in which the main component is $C_2H_2F_4$. $C_2H_2F_4$ is mixed with i- C_4H_{10} and SF_6 in various percentages, to control the amount of liberated charge and the occurrence of violent discharges. However, $C_{2}H_{2}F_{4}$ and SF_{6} are characterized by high global warming potentials. In this work, we study the performance of new eco-friendly RPC gas mixtures. The C₂H₂F₄ is replaced with a proper mixture of $C_3H_2F_4$ and CO_2 , while CF_3I , C_4F_7N and $C_5F_{10}O$ were considered as alternatives to SF_6 . We approach the problem at three stages: (1) First, we propose complete and consistent sets of cross sections for $C_3H_2F_4$ and strongly attaching gases. including CF₃I, C_4F_7N and $C_5F_{10}O$, (2) Second, we investigate the transport of electrons in various eco-friendly gas mixtures, and (3) Third, we simulate the inception and propagation of streamers in LHC-like conditions. Swarm analysis was performed using pulsed-Townsend measurements of swarm data, numerical solutions of Boltzmann's equation, and Monte Carlo simulations. The inception and propagation of streamers were simulated using the classical fluid model, which involves the drift-diffusion approximation and local field approximation. The model is implemented in 3D setup within the AMReX environment.

Acknowledgments: This work is supported by the Science Fund of the Republic of Serbia, Grant No. 7749560, Exploring ultra-low global warming potential gases for insulation in high-voltage technology: Experiments and modelling EGWIn.